
1.专属定制:每个学生一套学习方案并配备专属班主任和教师
2.教学模式:独创教学系统,我们不仅授课,更专注学生知识的吸收
3.严格管理:标准化、流程化的管理模式,全面保障孩子的学习状态
4.教研团队:戴氏精英教研团队,严格筛选制度,定期举办教研活动
5.三方互动:学生-家长-教师三方无缝衔接,让学生无后顾之忧
6.灵活入学:随到随学 滚动开班 找到适合的班型才能事半功倍
7.心理辅导:专属心理老师一对一辅导,随时调节学生心理状态
8.专业实力:名师荟教育专家联合一线公立学校针对教育问题长期举办公益讲座
9.学习环境:宽敞明亮的教室,优雅舒适的住宿环境,让你专心学习
七年级语文学习指导
教育部中考文件对现代文阅读要求是以课外材料为主,很明显,现代文阅读应该主要考查知识的迁移和运用能力。在复习中,应该做好如下几个方面:
一、要选择好阅读材料。即既有三大实用文体——记叙文、说明文和议论文,还要有文学作品中的散文和小说(诗歌和戏剧在试题中出现不多),内容自然要选好的,语言文字好,思想内容好,文化内涵深,说明文要具有科学性和时代性。篇幅也要一般在1000字到1500字之间、内容和语言俱佳的名篇,字数也可以突破,不能任意进行删改。
二、要注重整体理解感知:对文章的主要内容、重要观点和思想要能够准确的把握,要理解其形象的意义,这是阅读文章的要点:因为只有做到了这一点,才能正确掌握解答其他题目的钥匙。
三、是明确文章的写作思路。也就是理清文章的篇章结构,把握作者藻篇布局的匠心。这是对文章的艺术特色进行探求的重要方面,也是掌握文章中心和重点的不可或缺的环节。
四、是能够根据语言环境准确理解关键词语和句子的含义。关键的词语和句子,有时候,看起来很普通,很平实,但只要认真思考,却发现其有十分深刻的内涵。要探讨文章的中心和主题,常常在我们理解了一个词语或一个重要句子之后。因此,复习中,要努力锻炼我们发现和理解这类词语和句子的能力。
五、是能够运用探究精神对文章的观点或写作技巧提出自己的看法:这类题,一般是开放性试题,根据材料,我们既可以采用正常的思维方式解答,也可以采用发散思维和逆向思维的方式,表达自己的观点和看法。这类题的答案一般也是不固定的,但必须有道理,有一定说服力。这也是近来用得最多的题型。
六、是能结合文章内容进行思考拓展。从近的中考题看,有不少阅读题有适当的拓展,比如从说明文所讲述的知识联系到生活中的现象,要求进行知识迁移;从记叙文的内容出发,要求对文章进行归纳梳理,制作卡片,根据内容进行迁移式的图画欣赏等。这类试题相当灵活,也很有价值,应该引起我们的关注。
文言文阅读材料,主要来自课内,但也有不少地区考查课内外结合,或只考查课外材料。这些材料都是浅易的,好理解的。考查方式与以前相比,有了一些变化,我们可以看到,题目的设计不仅有文言文考查特有的通假字、句子翻译,还有重点词句的理解,文章内容的把握,还有与现代文相同的考查探究能力和创新精神的开放性试题。因为,注重了古诗文积累。
数学学习方法指导
创新
数学复习应是一个温故知新的学习过程,在“创新”意识的指导下,我们就会努力去搜索与问题相关知识,多方位、多角度地去看待问题,从而达到对有关知识的活的复习、运用——对知识的一种最佳组合。在“创新”意识下的复习,就会真正注重“双基”的基础性、生长点,就不会就事论事,简单重复,概念、性质要努力探寻其与其他知识之间的逻辑联系,在总结一般规律的同时还应挖掘其新的意义、新的作用;在数学解题练习中,特别是对典型题,要多想一想,还有没有其他新解法,有没有更简捷的解法,代数问题能否用几何方法来解,能否用三角、向量等方法来解,等等;在开放题的求解过程中,不仅要重视解法的多样性,答案的不惟一性,更要重视方法及解答过程的比较与鉴别,在比较与鉴别中复习所运用的数学思想方法,所运用的知识、技能。
正确理解数学概念是学好数学的前提条件,读概念时应注意概念的内涵和外延;数学的每一个命题有其真假,当你要证明或求解某一个命题时,必须先分清命题中哪些是条件,哪些是所求(或所证),正确理解每个数学语言,逐字逐句翻译成数学式子方能把握题目的意图,如果能画出几何图形(模型)则有助于帮助理解题意,找到解题途径。对题中明显的已知和未知(需求条件)弄清楚后,还要挖掘题目中隐含条件,当你将题目中的相关信息找出后,一般从所求(证)结论开始分析需要什么条件进行逆向分析,寻找解题途径,还可采用回想、联想、猜想等办法将条件与结论联结起来,如果所给条件结论较繁则应进行等价化简后再分析,化归为学过的典型题的模式后就可按部就班进行解题了。有不少题目还可通过间接办法进行思考求解,有时采用定义法、图解法、参数法、反证法、补集法可以独树一帜,迅速求解。答题时要严谨规范,步步有根据,讨论时要分类明确,不重复不遗漏。学会一题多解能深化对数学问题的理解和数学知识应用,提高数学素养,注意多题一解能把握数学知识的精髓,把书由厚读薄,不断积累数学思想和数学方法,学会分类、归纳、演绎、推理将学数变成为真正的训练人脑思维的体操。