
VIP一对一量身定制:根据学生自身特点,综合分析学生各方面情况,制定出符合学生学习特点的规划,一位老师执教一名学生,有针对性辅导。指派符合学生特点的教师授课,并由专职班主任负责学生的学习安排和心理辅导。
同基础分班优势互补:根据学生入学成绩分班,成绩薄弱,需要全面进步的学生培优补差,优势互补;指派符合学生特点的教师授课,并由专职班主任负责学生的学习安排和心理辅导。
3-6人小班精化教学:3-6人小班,针对成绩薄弱,需要全面进步的学生;可单科报读,也可全科报读;指派符合学生特点的教师授课,并由专职班主任负责学生的学习安排和心理辅导。
个性化指导高进优出:全科发展均衡,较为优秀,想要综合提升,全科优化的学生,指派符合学生特点的教师授课,并由专职班主任负责学生的学习安排和心理辅导。
同基础分班优势互补:根据学生入学成绩分班,培优补差,优势互补。指派符合学生特点的教师授课,并由专职班主任负责学生的学习安排和心理辅导。
数学学习方法
一、预习
1、通览教材,初步理解教材的基本内容和思路。
2、预习时如发现与新课相联系的旧知识掌握得不好,则查阅和补习旧知识,给学习新知识打好牢固的基础。
3、在阅读新教材过程中,要注意发现自己难以掌握和理解的地方,以便在听课时特别注意。
4、做好预习笔记。预习的结果要认真记在预习笔记上,预习笔记一般应记载教材的主要内容、自己没有弄懂需要在听课着重解决的问题、所查阅的旧知识等。
二、上课。
1、课前准备好上课所需的课本、笔记本和其他文具,并抓紧时间简要回忆和复习上节课所学的内容。
2、要带着强烈的求知欲上课,希望在课上能向老师学到新知识,解决新问题。
3、上课时要集中精力听讲,上课铃一响,就应立即进入积极的学习状态,有意识地排除分散注意力的各种因素。
4、听课要抬头,眼睛盯着老师的一举一动,专心致志聆听老师的每一句话。要紧紧抓住老师的思路,注意老师叙述问题的逻辑性,问题是怎样提出来的,以及分析问题和解决问题的方法步骤。
5、如果遇到某一个问题或某个问题的一个环节没有听懂,不要在课堂上“钻牛角尖”,而要先记下来,接着往下听。不懂的问题课后再去钻研或向老师请教。
6、要努力当课堂的主人。要认真思考老师提出的每一个问题,认真观察老师的每一个演示实验,大胆举手发表自己的看法,积极参加课堂讨论。
7、要特别注意老师讲课的开头和结尾。老师的“开场白”往往是概括上节内容,引出本节的新课题,并提出本节课的目的要求和要讲述的中心问题,起着承上起下的作用。老师的课后总结,往往是一节课的精要提炼和复习提示,是本节课的高度概括和总结。
8、要养成记笔记的好习惯。最好是一边听一边记,当听与记发生矛盾时,要以听为主,下课后再补上笔记。记笔记要有重点,要把老师板书的知识提纲、补充的课外知识、典型题目的解题步骤和课堂上没有听懂的问题记下来,供课后复习时参考。
知识点、概念总结12.角的符号:角的符号:∠
.角的种类:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。
锐角:大于0°,小于90°的角叫做锐角。
直角:等于90°的角叫做直角。
钝角:大于90°而小于180°的角叫做钝角。
平角:等于180°的角叫做平角。
优角:大于180°小于360°叫优角。
劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。
周角:等于360°的角叫做周角。
负角:按照顺时针方向旋转而成的角叫做负角。
正角:逆时针旋转的角为正角。
0角:等于零度的角。
余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。
对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。
还有许多种角的关系,如内错角,同位角,同旁内角(三线八角中,主要用来判断平行)!
.几何图形分类
(1)立体几何图形可以分为以下几类:
第一类:柱体;
包括:圆柱和棱柱,棱柱又可分为直棱柱和斜棱柱,棱柱体按底面边数的多少又可分为三棱柱、四棱柱、N棱柱;
棱柱体积统一等于底面面积乘以高,即V=SH,
第二类:锥体;
包括:圆锥体和棱锥体,棱锥分为三棱锥、四棱锥以及N棱锥;
棱锥体积统一为V=SH/3,
第三类:球体;
此分类只包含球一种几何体,
体积公式V=4πR3/3,
其他不常用分类:圆台、棱台、球冠等很少接触到。
大多几何体都由这些几何体组成。
(2)平面几何图形如何分类
a.圆形
b.多边形:三角形(分为一般三角形,直角三角形,等腰三角形,等边三角形)、四边形(分为不规则四边形,体形,平行四边形,平行四边形又分:矩形,菱形,正方形)、五边形、六……
注:正方形既是矩形也是菱形